可以說幾乎是自然科學和社會科學的所有學科,其范圍已遠遠超出了計算機科學的范疇,人工智能與思維科學的關系是實踐和理論的關系,人工智能是處于思維科學的技術應用層次,是它的一個應用分支。從思維觀點看,人工智能不僅限于邏輯思維,要考慮形象思維、靈感思維才能促進人工智能的突破性的發(fā)展,數(shù)學常被認為是多種學科的基礎科學,數(shù)學也進入語言、思維領域,人工智能學科也必須借用數(shù)學工具,數(shù)學不僅在標準邏輯、模糊數(shù)學等范圍發(fā)揮作用,數(shù)學進入人工智能學科,它們將互相促進而更快地發(fā)展。馬斯克指出,在人工智能機器學習面具之下的本質仍然是統(tǒng)計?;幢敝变N人工智能應用軟件開發(fā)供應當計算機出現(xiàn)后,人類開始真正有了一個可以模擬人類思...
這是智能化研究者夢寐以求的東西。2013年,帝金數(shù)據(jù)普數(shù)中心數(shù)據(jù)研究員S.C WANG開發(fā)了一種新的數(shù)據(jù)分析方法,該方法導出了研究函數(shù)性質的新方法。作者發(fā)現(xiàn),新數(shù)據(jù)分析方法給計算機學會“創(chuàng)造”提供了一種方法。本質上,這種方法為人的“創(chuàng)造力”的模式化提供了一種相當有效的途徑。這種途徑是數(shù)學賦予的,是普通人無法擁有但計算機可以擁有的“能力”。從此,計算機不僅精于算,還會因精于算而精于創(chuàng)造。計算機學家們應該斬釘截鐵地剝奪“精于創(chuàng)造”的計算機過于***的操作能力,否則計算機真的有一天會“反捕”人類。人工智能就其本質而言,是對人的思維的信息過程的模擬。包河區(qū)本地人工智能應用軟件開發(fā)銷售廠家自下而上, 接...
主流科研集中在弱人工智能上,并且一般認為這一研究領域已經(jīng)取得可觀的成就。強人工智能的研究則處于停滯不前的狀態(tài)下。對強人工智能的哲學爭論“強人工智能”一詞**初是約翰·羅杰斯·希爾勒針對計算機和其它信息處理機器創(chuàng)造的,其定義為:“強人工智能觀點認為計算機不僅是用來研究人的思維的一種工具;相反,只要運行適當?shù)某绦?,計算機本身就是有思維的?!保↗ SEARLE IN MINDS BRAINS AND PROGRAMS. THE BEHAVIORAL AND BRAIN SCIENCES,VOL. 3,1980)這是指使計算機從事智能的活動。在這里智能的涵義是多義的、不確定的,像下面所提到的就是其中的...
關于什么是“智能”,涉及到諸如意識(CONSCIOUSNESS)、自我(SELF)、思維(MIND)(包括無意識的思維(UNCONSCIOUS MIND))等問題。人***了解的智能是人本身的智能,這是普遍認同的觀點。但是我們對我們自身智能的理解都非常有限,對構成人的智能的必要元素也了解有限,所以就很難定義什么是人工智能。人工智能的研究往往涉及對人的智能本身的研究。其它關于動物或其它人造系統(tǒng)的智能也普遍被認為是人工智能相關的研究課題。尼爾遜教授對人工智能下了這樣一個定義:“人工智能是關于知識的學科――怎樣表示知識以及怎樣獲得知識并使用知識的科學?!倍硪粋€美國麻省理工學院的溫斯頓教授認為:“人...
當回頭審視新方法的推演過程和數(shù)學的時候,作者拓展了對思維和數(shù)學的認識。數(shù)學簡潔,清晰,可靠性、模式化強。在數(shù)學的發(fā)展史上,處處閃耀著數(shù)學大師們創(chuàng)造力的光輝。這些創(chuàng)造力以各種數(shù)學定理或結論的方式呈現(xiàn)出來,而數(shù)學定理比較大的特點就是:建立在一些基本的概念和公理上,以模式化的語言方式表達出來的包含豐富信息的邏輯結構。應該說,數(shù)學是**單純、**直白地反映著(至少一類)創(chuàng)造力模式的學科。1956年夏季,以麥卡賽、明斯基、羅切斯特和申農等為首的一批有遠見卓識的年輕科學家在一起聚會,共同研究和探討用機器模擬智能的一系列有關問題,并***提出了“人工智能”這一術語,它標志著“人工智能”這門新興學科的正式誕生...
大腦模擬主條目:控制論和計算神經(jīng)科學20世紀40年代到50年代,許多研究者探索神經(jīng)病學,信息理論及控制論之間的聯(lián)系。其中還造出一些使用電子網(wǎng)絡構造的初步智能,如W. GREY WALTER的TURTLES和JOHNS HOPKINS BEAST。 這些研究者還經(jīng)常在普林斯頓大學和英國的RATIO CLUB舉行技術協(xié)會會議。直到1960年, 大部分人已經(jīng)放棄這個方法,盡管在80年代再次提出這些原理。符號處理主條目:GOFAI當20世紀50年代,數(shù)字計算機研制成功,研究者開始探索人類智能是否能簡化成符號處理。研究主要集中在卡內基梅隆大學, 斯坦福大學和麻省理工學院,而各自有**的研究風格。JOHN...
DARTMOUTH會議后的7年中,AI研究開始快速發(fā)展.雖然這個領域還沒明確定義,會議中的一些思想 已被重新考慮和使用了. CARNEGIE MELLON大學和MIT開始組建AI研究中心.研究面臨新的挑戰(zhàn):下一步需 要建立能夠更有效解決問題的系統(tǒng),例如在"邏輯**"中減少搜索;還有就是建立可以自我學習的系統(tǒng).1957年一個新程序,"通用解題機"(GPS)的***個版本進行了測試.這個程序是由制作"邏輯**" 的同一個組開發(fā)的.GPS擴展了WIENER的反饋原理,可以解決很多常識問題.兩年以后,IBM成立了一個AI研 究組.HERBERT GELERNETER花3年時間制作了一個解幾何定理的程序...
這些范式可以讓研究者研究單獨的問題和找出有用且可驗證的方案,而不需考慮單一的方法。一個解決特定問題的AGENT可以使用任何可行的方法-一些AGENT用符號方法和邏輯方法,一些則是子符號神經(jīng)網(wǎng)絡或其他新的方法。范式同時也給研究者提供一個與其他領域溝通的共同語言--如決策論和經(jīng)濟學(也使用ABSTRACT AGENTS的概念)。90年代智能AGENT范式被***接受。AGENT體系結構和認知體系結構研究者設計出一些系統(tǒng)來處理多ANGENT系統(tǒng)中智能AGENT之間的相互作用。一個系統(tǒng)中包含符號和子符號部分的系統(tǒng)稱為混合智能系統(tǒng) ,而對這種系統(tǒng)的研究則是人工智能系統(tǒng)集成。分級控制系統(tǒng)則給反應級別的子符...
90年代,人工智能研究發(fā)展出復雜的數(shù)學工具來解決特定的分支問題。這些工具是真正的科學方法,即這些方法的結果是可測量的和可驗證的,同時也是人工智能成功的原因。共用的數(shù)學語言也允許已有學科的合作(如數(shù)學,經(jīng)濟或運籌學)。STUART J. RUSSELL和PETER NORVIG指出這些進步不亞于“**”和“NEATS的成功”。有人批評這些技術太專注于特定的問題,而沒有考慮長遠的強人工智能目標。集成方法智能AGENT范式智能AGENT是一個會感知環(huán)境并作出行動以達致目標的系統(tǒng)。**簡單的智能AGENT是那些可以解決特定問題的程序。更復雜的AGENT包括人類和人類組織(如公司)。人了解的智能是人本身...
自下而上, 接口AGENT,嵌入環(huán)境(機器人),行為主義,新式AI機器人領域相關的研究者,如RODNEY BROOKS,否定符號人工智能而專注于機器人移動和求生等基本的工程問題。他們的工作再次關注早期控制論研究者的觀點,同時提出了在人工智能中使用控制理論。這與認知科學領域中的表征感知論點是一致的:更高的智能需要個體的表征(如移動,感知和形象)。計算智能80年代中DAVID RUMELHART 等再次提出神經(jīng)網(wǎng)絡和聯(lián)結主義. 這和其他的子符號方法,如模糊控制和進化計算,都屬于計算智能學科研究范疇。統(tǒng)計學法神經(jīng)網(wǎng)絡研究試圖以模擬人類和動物的大腦結構重現(xiàn)這種技能。蚌埠質量人工智能應用軟件開發(fā)供應而強...
需要要指出的是,弱人工智能并非和強人工智能完全對立,也就是說,即使強人工智能是可能的,弱人工智能仍然是有意義的。至少,***的計算機能做的事,像算術運算等,在百多年前是被認為很需要智能的。政策措施2019年6月17日,國家新一代人工智能治理專業(yè)委員會發(fā)布《新一代人工智能治理原則——發(fā)展負責任的人工智能》,提出了人工智能治理的框架和行動指南。這是中國促進新一代人工智能健康發(fā)展,加強人工智能法律、倫理、社會問題研究,積極推動人工智能全球治理的一項重要成果。 [3]1月14日,中國外交部發(fā)言人郭嘉昆表示:堅決反對美方在AI領域也搞“三六九等” [65]。長豐本地人工智能應用軟件開發(fā)銷售廠家但80年代...
主流科研集中在弱人工智能上,并且一般認為這一研究領域已經(jīng)取得可觀的成就。強人工智能的研究則處于停滯不前的狀態(tài)下。對強人工智能的哲學爭論“強人工智能”一詞**初是約翰·羅杰斯·希爾勒針對計算機和其它信息處理機器創(chuàng)造的,其定義為:“強人工智能觀點認為計算機不僅是用來研究人的思維的一種工具;相反,只要運行適當?shù)某绦?,計算機本身就是有思維的?!保↗ SEARLE IN MINDS BRAINS AND PROGRAMS. THE BEHAVIORAL AND BRAIN SCIENCES,VOL. 3,1980)這是指使計算機從事智能的活動。在這里智能的涵義是多義的、不確定的,像下面所提到的就是其中的...
當回頭審視新方法的推演過程和數(shù)學的時候,作者拓展了對思維和數(shù)學的認識。數(shù)學簡潔,清晰,可靠性、模式化強。在數(shù)學的發(fā)展史上,處處閃耀著數(shù)學大師們創(chuàng)造力的光輝。這些創(chuàng)造力以各種數(shù)學定理或結論的方式呈現(xiàn)出來,而數(shù)學定理比較大的特點就是:建立在一些基本的概念和公理上,以模式化的語言方式表達出來的包含豐富信息的邏輯結構。應該說,數(shù)學是**單純、**直白地反映著(至少一類)創(chuàng)造力模式的學科。1956年夏季,以麥卡賽、明斯基、羅切斯特和申農等為首的一批有遠見卓識的年輕科學家在一起聚會,共同研究和探討用機器模擬智能的一系列有關問題,并***提出了“人工智能”這一術語,它標志著“人工智能”這門新興學科的正式誕生...
可以說幾乎是自然科學和社會科學的所有學科,其范圍已遠遠超出了計算機科學的范疇,人工智能與思維科學的關系是實踐和理論的關系,人工智能是處于思維科學的技術應用層次,是它的一個應用分支。從思維觀點看,人工智能不僅限于邏輯思維,要考慮形象思維、靈感思維才能促進人工智能的突破性的發(fā)展,數(shù)學常被認為是多種學科的基礎科學,數(shù)學也進入語言、思維領域,人工智能學科也必須借用數(shù)學工具,數(shù)學不僅在標準邏輯、模糊數(shù)學等范圍發(fā)揮作用,數(shù)學進入人工智能學科,它們將互相促進而更快地發(fā)展。人工智能是一門邊緣學科,屬于自然科學和社會科學的交叉。合肥定制人工智能應用軟件開發(fā)量大從優(yōu)2017年12月,人工智能入選“2017年度中國...
智能模擬機器視、聽、觸、感覺及思維方式的模擬:指紋識別,人臉識別,視網(wǎng)膜識別,虹膜識別,掌紋識別,**系統(tǒng),智能搜索,定理證明,邏輯推理,博弈,信息感應與辨證處理。學科范疇人工智能是一門邊沿學科,屬于自然科學、社會科學、技術科學三向交叉學科。涉及學科哲學和認知科學,數(shù)學,神經(jīng)生理學,心理學,計算機科學,信息論,控制論,不定性論,仿生學,社會結構學與科學發(fā)展觀。研究范疇語言的學習與處理,知識表現(xiàn),智能搜索,推理,規(guī)劃,機器學習,知識獲取,組合調度問題,感知問題,模式識別,邏輯程序設計,軟計算,不精確和不確定的管理,人工生命,神經(jīng)網(wǎng)絡,復雜系統(tǒng),遺傳算法人類思維方式,**關鍵的難題還是機器的自主創(chuàng)...
認知模擬經(jīng)濟學家赫伯特·西蒙和艾倫·紐厄爾研究人類問題解決能力和嘗試將其形式化,同時他們?yōu)槿斯ぶ悄艿幕驹泶蛳禄A,如認知科學, 運籌學和經(jīng)營科學。他們的研究團隊使用心理學實驗的結果開發(fā)模擬人類解決問題方法的程序。這方法一直在卡內基梅隆大學沿襲下來,并在80年代于SOAR發(fā)展到高峰?;谶壿嫴幌癜瑐悺ぜ~厄爾和赫伯特·西蒙,JOHN MCCARTHY認為機器不需要模擬人類的思想,而應嘗試找到抽象推理和解決問題的本質,不管人們是否使用同樣的算法。他在斯坦福大學的實驗室致力于使用形式化邏輯解決多種問題,包括知識表示, 智能規(guī)劃和機器學習. 致力于邏輯方法的還有愛丁堡大學,而促成歐洲的其他地方開發(fā)編...
關于強人工智能的爭論不同于更廣義的一元論和二元論(DUALISM)的爭論。其爭論要點是:如果一臺機器的***工作原理就是對編碼數(shù)據(jù)進行轉換,那么這臺機器是不是有思維的?希爾勒認為這是不可能的。他舉了個中文房間的例子來說明,如果機器**是對數(shù)據(jù)進行轉換,而數(shù)據(jù)本身是對某些事情的一種編碼表現(xiàn),那么在不理解這一編碼和這實際事情之間的對應關系的前提下,機器不可能對其處理的數(shù)據(jù)有任何理解?;谶@一論點,希爾勒認為即使有機器通過了圖靈測試,也不一定說明機器就真的像人一樣有思維和意識?,F(xiàn)代電子計算機的產(chǎn)生便是對人腦思維功能的模擬,是對人腦思維的信息過程的模擬。廬陽區(qū)常規(guī)人工智能應用軟件開發(fā)定做價格從1956...
但80年代對AI工業(yè)來說也不全是好年景.86-87年對AI系統(tǒng)的需求下降,業(yè)界損失了近5億美元.象 TEKNOWLEDGE和INTELLICORP兩家共損失超過6百萬美元,大約占利潤的三分之一巨大的損失迫使許多研究***削減經(jīng)費.另一個令人失望的是**部高級研究計劃署支持的所謂"智能卡車".這個項目目的是研制一種能完成許多戰(zhàn)地任務的機器人。由于項目缺陷和成功無望,PENTAGON停止了項目的經(jīng)費.人工智能機器人(2張)盡管經(jīng)歷了這些受挫的事件,AI仍在慢慢恢復發(fā)展.新的技術在日本被開發(fā)出來,如在美國**的模糊邏輯,它可以從不確定的條件作出決策;還有神經(jīng)網(wǎng)絡,被視為實現(xiàn)人工智能的可能途徑.總之,...
可是,人即使在不清楚程序時,根據(jù)發(fā)現(xiàn)(HEU- RISTIC)法而設法巧妙的解決了問題的情況是不少的。如識別書寫的文字、圖形、聲音等,所謂認識模型就是一例。再有,能力因學習而得到的提高和歸納推理、依據(jù)類推而進行的推理等,也是其例。此外,解決的程序雖然是清楚的,但是實行起來需要很長時間,對于這樣的問題,人能在很短的時間內找出相當好的解決方法,如競技的比賽等就是其例。還有,計算機在沒有給予充分的合乎邏輯的正確信息時,就不能理解它的意義,而人在*是被給予不充分、不正確的信息的情況下,根據(jù)適當?shù)难a充信息,也能抓住它的意義。自然語言就是例子。用計算機處理自然語言,稱為自然語言處理。它必須改變它的計劃。因...
從1956年正式提出人工智能學科算起,50多年來,取得長足的發(fā)展,成為一門***的交叉和前沿科學??偟恼f來,人工智能的目的就是讓計算機這臺機器能夠像人一樣思考。如果希望做出一臺能夠思考的機器,那就必須知道什么是思考,更進一步講就是什么是智慧。什么樣的機器才是智慧的呢?科學家已經(jīng)作出了汽車、火車、飛機和收音機等等,它們模仿我們身體***的功能,但是能不能模仿人類大腦的功能呢?我們也**知道這個裝在我們天靈蓋里面的東西是由數(shù)十億個神經(jīng)細胞組成的***,我們對這個東西知之甚少,模仿它或許是天下**困難的事情了。人工智能是一門邊沿學科,屬于自然科學、社會科學、技術科學三向交叉學科。合肥定制人工智能應用...
ROGER SCHANK 描述他們的“反邏輯”方法為 "SCRUFFY" .常識知識庫 (如DOUG LENAT的CYC)就是"SCRUFFY"AI的例子,因為他們必須人工一次編寫一個復雜的概念。基于知識大約在1970年出現(xiàn)大容量內存計算機,研究者分別以三個方法開始把知識構造成應用軟件。這場“知識**”促成**系統(tǒng)的開發(fā)與計劃,這是***個成功的人工智能軟件形式?!爸R**”同時讓人們意識到許多簡單的人工智能軟件可能需要大量的知識。子符號法80年代符號人工智能停滯不前,很多人認為符號系統(tǒng)永遠不可能模仿人類所有的認知過程,特別是感知,機器人,機器學習和模式識別。很多研究者開始關注子符號方法解決特...
90年代,人工智能研究發(fā)展出復雜的數(shù)學工具來解決特定的分支問題。這些工具是真正的科學方法,即這些方法的結果是可測量的和可驗證的,同時也是人工智能成功的原因。共用的數(shù)學語言也允許已有學科的合作(如數(shù)學,經(jīng)濟或運籌學)。STUART J. RUSSELL和PETER NORVIG指出這些進步不亞于“**”和“NEATS的成功”。有人批評這些技術太專注于特定的問題,而沒有考慮長遠的強人工智能目標。集成方法智能AGENT范式智能AGENT是一個會感知環(huán)境并作出行動以達致目標的系統(tǒng)。**簡單的智能AGENT是那些可以解決特定問題的程序。更復雜的AGENT包括人類和人類組織(如公司)。至少它必須出現(xiàn)禮貌地...
為了得到相同智能效果,兩種方式通常都可使用。采用前一種方法,需要人工詳細規(guī)定程序邏輯,如果游戲簡單,還是方便的。如果游戲復雜,角色數(shù)量和活動空間增加,相應的邏輯就會很復雜(按指數(shù)式增長),人工編程就非常繁瑣,容易出錯。而一旦出錯,就必須修改原程序,重新編譯、調試,***為用戶提供一個新的版本或提供一個新補丁,非常麻煩。采用后一種方法時,編程者要為每一角色設計一個智能系統(tǒng)(一個模塊)來進行控制,這個智能系統(tǒng)(模塊)開始什么也不懂,就像初生嬰兒那樣,但它能夠學習,能漸漸地適應環(huán)境,應付各種復雜情況。智能AGENT必須能夠制定目標和實現(xiàn)這些目標。馬鞍山本地人工智能應用軟件開發(fā)聯(lián)系方式2024年12月...
DARTMOUTH會議后的7年中,AI研究開始快速發(fā)展.雖然這個領域還沒明確定義,會議中的一些思想 已被重新考慮和使用了. CARNEGIE MELLON大學和MIT開始組建AI研究中心.研究面臨新的挑戰(zhàn):下一步需 要建立能夠更有效解決問題的系統(tǒng),例如在"邏輯**"中減少搜索;還有就是建立可以自我學習的系統(tǒng).1957年一個新程序,"通用解題機"(GPS)的***個版本進行了測試.這個程序是由制作"邏輯**" 的同一個組開發(fā)的.GPS擴展了WIENER的反饋原理,可以解決很多常識問題.兩年以后,IBM成立了一個AI研 究組.HERBERT GELERNETER花3年時間制作了一個解幾何定理的程序...
研究方法如今沒有統(tǒng)一的原理或范式指導人工智能研究。許多問題上研究者都存在爭論。其中幾個長久以來仍沒有結論的問題是:是否應從心理或神經(jīng)方面模擬人工智能?或者像鳥類生物學對于航空工程一樣,人類生物學對于人工智能研究是沒有關系的?智能行為能否用簡單的原則(如邏輯或優(yōu)化)來描述?還是必須解決大量完全無關的問題?智能是否可以使用高級符號表達,如詞和想法?還是需要“子符號”的處理?JOHN HAUGELAND提出了GOFAI(出色的老式人工智能)的概念,也提議人工智能應歸類為SYNTHETIC INTELLIGENCE,這個概念后來被某些非GOFAI研究者采納。早期的人工智能研究人員直接模仿人類進行逐步的...
2025年3月19日消息,英偉達表示,將與電信企業(yè)合作開發(fā)基于人工智能的6G無線技術。英偉達正與T-Mobile、MITRE、思科、ODC和Booz Allen Hamilton合作開發(fā)AI原生6G無線網(wǎng)絡的硬件、軟件和架構。 [91]2025年4月,房地產(chǎn)垂直領域***AI智能體上線,房地產(chǎn)行業(yè)全國較早垂直領域AI智能平臺——克而瑞AI Agent公開內測,結合行業(yè)特色RAG(知識庫)+數(shù)據(jù)庫,利用地產(chǎn)思維思考分析,為房地產(chǎn)行業(yè)不同崗位從業(yè)者提供了專業(yè)工作成果。2025年4月18日,國新辦舉行經(jīng)濟數(shù)據(jù)例行新聞發(fā)布會,介紹2025年一季度工業(yè)和信息化發(fā)展情況。工業(yè)和信息化部總工程師謝少鋒在談到...
關于什么是“智能”,涉及到諸如意識(CONSCIOUSNESS)、自我(SELF)、思維(MIND)(包括無意識的思維(UNCONSCIOUS MIND))等問題。人***了解的智能是人本身的智能,這是普遍認同的觀點。但是我們對我們自身智能的理解都非常有限,對構成人的智能的必要元素也了解有限,所以就很難定義什么是人工智能。人工智能的研究往往涉及對人的智能本身的研究。其它關于動物或其它人造系統(tǒng)的智能也普遍被認為是人工智能相關的研究課題。尼爾遜教授對人工智能下了這樣一個定義:“人工智能是關于知識的學科――怎樣表示知識以及怎樣獲得知識并使用知識的科學。”而另一個美國麻省理工學院的溫斯頓教授認為:“人...
1955年末,NEWELL和SIMON做了一個名為"邏輯**"(LOGIC THEORIST)的程序.這個程序被許多人 認為是***個AI程序.它將每個問題都表示成一個樹形模型,然后選擇**可能得到正確結論的那一枝來求解 問題."邏輯**"對公眾和AI研究領域產(chǎn)生的影響使它成為AI發(fā)展中一個重要的里程碑.1956年,被認為是 人工智能之父的JOHN MCCARTHY組織了一次學會,將許多對機器智能感興趣的**學者聚集在一起進行了一 個月的討論.他請他們到 VERMONT參加 " DARTMOUTH人工智能夏季研究會".從那時起,這個領域被命名為 "人工智能".雖然 DARTMOUTH學會不是非...
可是,人即使在不清楚程序時,根據(jù)發(fā)現(xiàn)(HEU- RISTIC)法而設法巧妙的解決了問題的情況是不少的。如識別書寫的文字、圖形、聲音等,所謂認識模型就是一例。再有,能力因學習而得到的提高和歸納推理、依據(jù)類推而進行的推理等,也是其例。此外,解決的程序雖然是清楚的,但是實行起來需要很長時間,對于這樣的問題,人能在很短的時間內找出相當好的解決方法,如競技的比賽等就是其例。還有,計算機在沒有給予充分的合乎邏輯的正確信息時,就不能理解它的意義,而人在*是被給予不充分、不正確的信息的情況下,根據(jù)適當?shù)难a充信息,也能抓住它的意義。自然語言就是例子。用計算機處理自然語言,稱為自然語言處理。人工智能是一門邊緣學科...
實現(xiàn)方法人工智能在計算機上實現(xiàn)時有2種不同的方式。一種是采用傳統(tǒng)的編程技術,使系統(tǒng)呈現(xiàn)智能的效果,而不考慮所用方法是否與人或動物機體所用的方法相同。這種方法叫工程學方法(ENGINEERIN***PROACH),它已在一些領域內作出了成果,如文字識別、電腦下棋等。另一種是模擬法(MODELIN***PROACH),它不僅要看效果,還要求實現(xiàn)方法也和人類或生物機體所用的方法相同或相類似。遺傳算法(GENERIC ALGORITHM,簡稱GA)和人工神經(jīng)網(wǎng)絡(ARTIFICIAL NEURAL NETWORK,簡稱ANN)均屬后一類型。遺傳算法模擬人類或生物的遺傳-進化機制,人工神經(jīng)網(wǎng)絡則是模擬人...