強(qiáng)弱對比人工智能的一個比較流行的定義,也是該領(lǐng)域較早的定義,是由約翰·麥卡錫(JOHN MCCARTHY)在1956年的達(dá)特矛斯會議(DARTMOUTH CONFERENCE)上提出的:人工智能就是要讓機(jī)器的行為看起來就象是人所表現(xiàn)出的智能行為一樣。但是這個定義似乎忽略了強(qiáng)人工智能的可能性(見下)。另一個定義指人工智能是人造機(jī)器所表現(xiàn)出來的智能性??傮w來講,對人工智能的定義大多可劃分為四類,即機(jī)器“像人一樣思考”、“像人一樣行動”、“理性地思考”和“理性地行動”。這里“行動”應(yīng)廣義地理解為采取行動,或制定行動的決策,而不是肢體動作?,F(xiàn)代電子計算機(jī)的產(chǎn)生便是對人腦思維功能的模擬,是對人腦思維的信...
而強(qiáng)人工智能則暫時處于瓶頸,還需要科學(xué)家們和人類的努力。用來研究人工智能的主要物質(zhì)基礎(chǔ)以及能夠?qū)崿F(xiàn)人工智能技術(shù)平臺的機(jī)器就是計算機(jī),人工智能的發(fā)展歷史是和計算機(jī)科學(xué)技術(shù)的發(fā)展史聯(lián)系在一起的。除了計算機(jī)科學(xué)以外,人工智能還涉及信息論、控制論、自動化、仿生學(xué)、生物學(xué)、心理學(xué)、數(shù)理邏輯、語言學(xué)、醫(yī)學(xué)和哲學(xué)等多門學(xué)科。人工智能學(xué)科研究的主要內(nèi)容包括:知識表示、自動推理和搜索方法、機(jī)器學(xué)習(xí)和知識獲取、知識處理系統(tǒng)、自然語言理解、計算機(jī)視覺、智能機(jī)器人、自動程序設(shè)計等方面。一個理想的人工智能社會是人類與人工智能友好相處的社會。蕪湖定制人工智能應(yīng)用軟件開發(fā)量大從優(yōu)2025年3月19日消息,英偉達(dá)表示,將與電...
DARTMOUTH會議后的7年中,AI研究開始快速發(fā)展.雖然這個領(lǐng)域還沒明確定義,會議中的一些思想 已被重新考慮和使用了. CARNEGIE MELLON大學(xué)和MIT開始組建AI研究中心.研究面臨新的挑戰(zhàn):下一步需 要建立能夠更有效解決問題的系統(tǒng),例如在"邏輯**"中減少搜索;還有就是建立可以自我學(xué)習(xí)的系統(tǒng).1957年一個新程序,"通用解題機(jī)"(GPS)的***個版本進(jìn)行了測試.這個程序是由制作"邏輯**" 的同一個組開發(fā)的.GPS擴(kuò)展了WIENER的反饋原理,可以解決很多常識問題.兩年以后,IBM成立了一個AI研 究組.HERBERT GELERNETER花3年時間制作了一個解幾何定理的程序...
自下而上, 接口AGENT,嵌入環(huán)境(機(jī)器人),行為主義,新式AI機(jī)器人領(lǐng)域相關(guān)的研究者,如RODNEY BROOKS,否定符號人工智能而專注于機(jī)器人移動和求生等基本的工程問題。他們的工作再次關(guān)注早期控制論研究者的觀點,同時提出了在人工智能中使用控制理論。這與認(rèn)知科學(xué)領(lǐng)域中的表征感知論點是一致的:更高的智能需要個體的表征(如移動,感知和形象)。計算智能80年代中DAVID RUMELHART 等再次提出神經(jīng)網(wǎng)絡(luò)和聯(lián)結(jié)主義. 這和其他的子符號方法,如模糊控制和進(jìn)化計算,都屬于計算智能學(xué)科研究范疇。統(tǒng)計學(xué)法更重要的是,AI反過來有助于人類認(rèn)識自身智能的形成。合肥質(zhì)量人工智能應(yīng)用軟件開發(fā)費用主流科研...
主流科研集中在弱人工智能上,并且一般認(rèn)為這一研究領(lǐng)域已經(jīng)取得可觀的成就。強(qiáng)人工智能的研究則處于停滯不前的狀態(tài)下。對強(qiáng)人工智能的哲學(xué)爭論“強(qiáng)人工智能”一詞**初是約翰·羅杰斯·希爾勒針對計算機(jī)和其它信息處理機(jī)器創(chuàng)造的,其定義為:“強(qiáng)人工智能觀點認(rèn)為計算機(jī)不僅是用來研究人的思維的一種工具;相反,只要運行適當(dāng)?shù)某绦?,計算機(jī)本身就是有思維的?!保↗ SEARLE IN MINDS BRAINS AND PROGRAMS. THE BEHAVIORAL AND BRAIN SCIENCES,VOL. 3,1980)這是指使計算機(jī)從事智能的活動。在這里智能的涵義是多義的、不確定的,像下面所提到的就是其中的...
關(guān)于什么是“智能”,涉及到諸如意識(CONSCIOUSNESS)、自我(SELF)、思維(MIND)(包括無意識的思維(UNCONSCIOUS MIND))等問題。人***了解的智能是人本身的智能,這是普遍認(rèn)同的觀點。但是我們對我們自身智能的理解都非常有限,對構(gòu)成人的智能的必要元素也了解有限,所以就很難定義什么是人工智能。人工智能的研究往往涉及對人的智能本身的研究。其它關(guān)于動物或其它人造系統(tǒng)的智能也普遍被認(rèn)為是人工智能相關(guān)的研究課題。尼爾遜教授對人工智能下了這樣一個定義:“人工智能是關(guān)于知識的學(xué)科――怎樣表示知識以及怎樣獲得知識并使用知識的科學(xué)。”而另一個美國麻省理工學(xué)院的溫斯頓教授認(rèn)為:“人...
1955年末,NEWELL和SIMON做了一個名為"邏輯**"(LOGIC THEORIST)的程序.這個程序被許多人 認(rèn)為是***個AI程序.它將每個問題都表示成一個樹形模型,然后選擇**可能得到正確結(jié)論的那一枝來求解 問題."邏輯**"對公眾和AI研究領(lǐng)域產(chǎn)生的影響使它成為AI發(fā)展中一個重要的里程碑.1956年,被認(rèn)為是 人工智能之父的JOHN MCCARTHY組織了一次學(xué)會,將許多對機(jī)器智能感興趣的**學(xué)者聚集在一起進(jìn)行了一 個月的討論.他請他們到 VERMONT參加 " DARTMOUTH人工智能夏季研究會".從那時起,這個領(lǐng)域被命名為 "人工智能".雖然 DARTMOUTH學(xué)會不是非...
自下而上, 接口AGENT,嵌入環(huán)境(機(jī)器人),行為主義,新式AI機(jī)器人領(lǐng)域相關(guān)的研究者,如RODNEY BROOKS,否定符號人工智能而專注于機(jī)器人移動和求生等基本的工程問題。他們的工作再次關(guān)注早期控制論研究者的觀點,同時提出了在人工智能中使用控制理論。這與認(rèn)知科學(xué)領(lǐng)域中的表征感知論點是一致的:更高的智能需要個體的表征(如移動,感知和形象)。計算智能80年代中DAVID RUMELHART 等再次提出神經(jīng)網(wǎng)絡(luò)和聯(lián)結(jié)主義. 這和其他的子符號方法,如模糊控制和進(jìn)化計算,都屬于計算智能學(xué)科研究范疇。統(tǒng)計學(xué)法基于這一論點,希爾勒認(rèn)為即使有機(jī)器通過了圖靈測試,也不一定說明機(jī)器就真的像人一樣有思維和意識...
意識和人工智能人工智能就其本質(zhì)而言,是對人的思維的信息過程的模擬。對于人的思維模擬可以從兩條道路進(jìn)行,一是結(jié)構(gòu)模擬,仿照人腦的結(jié)構(gòu)機(jī)制,制造出“類人腦”的機(jī)器;二是功能模擬,暫時撇開人腦的內(nèi)部結(jié)構(gòu),而從其功能過程進(jìn)行模擬?,F(xiàn)代電子計算機(jī)的產(chǎn)生便是對人腦思維功能的模擬,是對人腦思維的信息過程的模擬。弱人工智能如今不斷地迅猛發(fā)展,尤其是2008年經(jīng)濟(jì)危機(jī)后,美日歐希望借機(jī)器人等實現(xiàn)再工業(yè)化,工業(yè)機(jī)器人以比以往任何時候更快的速度發(fā)展,更加帶動了弱人工智能和相關(guān)領(lǐng)域產(chǎn)業(yè)的不斷突破,很多必須用人來做的工作如今已經(jīng)能用機(jī)器人實現(xiàn)。主流科研集中在弱人工智能上,并且一般認(rèn)為這一研究領(lǐng)域已經(jīng)取得可觀的成就。合肥...
智能模擬機(jī)器視、聽、觸、感覺及思維方式的模擬:指紋識別,人臉識別,視網(wǎng)膜識別,虹膜識別,掌紋識別,**系統(tǒng),智能搜索,定理證明,邏輯推理,博弈,信息感應(yīng)與辨證處理。學(xué)科范疇人工智能是一門邊沿學(xué)科,屬于自然科學(xué)、社會科學(xué)、技術(shù)科學(xué)三向交叉學(xué)科。涉及學(xué)科哲學(xué)和認(rèn)知科學(xué),數(shù)學(xué),神經(jīng)生理學(xué),心理學(xué),計算機(jī)科學(xué),信息論,控制論,不定性論,仿生學(xué),社會結(jié)構(gòu)學(xué)與科學(xué)發(fā)展觀。研究范疇語言的學(xué)習(xí)與處理,知識表現(xiàn),智能搜索,推理,規(guī)劃,機(jī)器學(xué)習(xí),知識獲取,組合調(diào)度問題,感知問題,模式識別,邏輯程序設(shè)計,軟計算,不精確和不確定的管理,人工生命,神經(jīng)網(wǎng)絡(luò),復(fù)雜系統(tǒng),遺傳算法人類思維方式,**關(guān)鍵的難題還是機(jī)器的自主創(chuàng)...
可以說幾乎是自然科學(xué)和社會科學(xué)的所有學(xué)科,其范圍已遠(yuǎn)遠(yuǎn)超出了計算機(jī)科學(xué)的范疇,人工智能與思維科學(xué)的關(guān)系是實踐和理論的關(guān)系,人工智能是處于思維科學(xué)的技術(shù)應(yīng)用層次,是它的一個應(yīng)用分支。從思維觀點看,人工智能不僅限于邏輯思維,要考慮形象思維、靈感思維才能促進(jìn)人工智能的突破性的發(fā)展,數(shù)學(xué)常被認(rèn)為是多種學(xué)科的基礎(chǔ)科學(xué),數(shù)學(xué)也進(jìn)入語言、思維領(lǐng)域,人工智能學(xué)科也必須借用數(shù)學(xué)工具,數(shù)學(xué)不僅在標(biāo)準(zhǔn)邏輯、模糊數(shù)學(xué)等范圍發(fā)揮作用,數(shù)學(xué)進(jìn)入人工智能學(xué)科,它們將互相促進(jìn)而更快地發(fā)展。強(qiáng)人工智能的研究則處于停滯不前的狀態(tài)下?,幒^(qū)品牌人工智能應(yīng)用軟件開發(fā)廠家供應(yīng)從1956年正式提出人工智能學(xué)科算起,50多年來,取得長足的...
強(qiáng)弱對比人工智能的一個比較流行的定義,也是該領(lǐng)域較早的定義,是由約翰·麥卡錫(JOHN MCCARTHY)在1956年的達(dá)特矛斯會議(DARTMOUTH CONFERENCE)上提出的:人工智能就是要讓機(jī)器的行為看起來就象是人所表現(xiàn)出的智能行為一樣。但是這個定義似乎忽略了強(qiáng)人工智能的可能性(見下)。另一個定義指人工智能是人造機(jī)器所表現(xiàn)出來的智能性??傮w來講,對人工智能的定義大多可劃分為四類,即機(jī)器“像人一樣思考”、“像人一樣行動”、“理性地思考”和“理性地行動”。這里“行動”應(yīng)廣義地理解為采取行動,或制定行動的決策,而不是肢體動作。2024年12月20日,“人工智能”當(dāng)選為漢語盤點2024年度...
實現(xiàn)方法人工智能在計算機(jī)上實現(xiàn)時有2種不同的方式。一種是采用傳統(tǒng)的編程技術(shù),使系統(tǒng)呈現(xiàn)智能的效果,而不考慮所用方法是否與人或動物機(jī)體所用的方法相同。這種方法叫工程學(xué)方法(ENGINEERIN***PROACH),它已在一些領(lǐng)域內(nèi)作出了成果,如文字識別、電腦下棋等。另一種是模擬法(MODELIN***PROACH),它不僅要看效果,還要求實現(xiàn)方法也和人類或生物機(jī)體所用的方法相同或相類似。遺傳算法(GENERIC ALGORITHM,簡稱GA)和人工神經(jīng)網(wǎng)絡(luò)(ARTIFICIAL NEURAL NETWORK,簡稱ANN)均屬后一類型。遺傳算法模擬人類或生物的遺傳-進(jìn)化機(jī)制,人工神經(jīng)網(wǎng)絡(luò)則是模擬人...
可以說幾乎是自然科學(xué)和社會科學(xué)的所有學(xué)科,其范圍已遠(yuǎn)遠(yuǎn)超出了計算機(jī)科學(xué)的范疇,人工智能與思維科學(xué)的關(guān)系是實踐和理論的關(guān)系,人工智能是處于思維科學(xué)的技術(shù)應(yīng)用層次,是它的一個應(yīng)用分支。從思維觀點看,人工智能不僅限于邏輯思維,要考慮形象思維、靈感思維才能促進(jìn)人工智能的突破性的發(fā)展,數(shù)學(xué)常被認(rèn)為是多種學(xué)科的基礎(chǔ)科學(xué),數(shù)學(xué)也進(jìn)入語言、思維領(lǐng)域,人工智能學(xué)科也必須借用數(shù)學(xué)工具,數(shù)學(xué)不僅在標(biāo)準(zhǔn)邏輯、模糊數(shù)學(xué)等范圍發(fā)揮作用,數(shù)學(xué)進(jìn)入人工智能學(xué)科,它們將互相促進(jìn)而更快地發(fā)展。智能AGENT必須能夠制定目標(biāo)和實現(xiàn)這些目標(biāo)?,幒^(qū)品牌人工智能應(yīng)用軟件開發(fā)量大從優(yōu)關(guān)于強(qiáng)人工智能的爭論不同于更廣義的一元論和二元論(DU...
關(guān)于強(qiáng)人工智能的爭論不同于更廣義的一元論和二元論(DUALISM)的爭論。其爭論要點是:如果一臺機(jī)器的***工作原理就是對編碼數(shù)據(jù)進(jìn)行轉(zhuǎn)換,那么這臺機(jī)器是不是有思維的?希爾勒認(rèn)為這是不可能的。他舉了個中文房間的例子來說明,如果機(jī)器**是對數(shù)據(jù)進(jìn)行轉(zhuǎn)換,而數(shù)據(jù)本身是對某些事情的一種編碼表現(xiàn),那么在不理解這一編碼和這實際事情之間的對應(yīng)關(guān)系的前提下,機(jī)器不可能對其處理的數(shù)據(jù)有任何理解。基于這一論點,希爾勒認(rèn)為即使有機(jī)器通過了圖靈測試,也不一定說明機(jī)器就真的像人一樣有思維和意識。情感和社交技能對于一個智能AGENT是很重要的。淮北質(zhì)量人工智能應(yīng)用軟件開發(fā)供應(yīng)計算機(jī)時代1941年的一項發(fā)明使信息存儲和處...
需要要指出的是,弱人工智能并非和強(qiáng)人工智能完全對立,也就是說,即使強(qiáng)人工智能是可能的,弱人工智能仍然是有意義的。至少,***的計算機(jī)能做的事,像算術(shù)運算等,在百多年前是被認(rèn)為很需要智能的。政策措施2019年6月17日,國家新一代人工智能治理專業(yè)委員會發(fā)布《新一代人工智能治理原則——發(fā)展負(fù)責(zé)任的人工智能》,提出了人工智能治理的框架和行動指南。這是中國促進(jìn)新一代人工智能健康發(fā)展,加強(qiáng)人工智能法律、倫理、社會問題研究,積極推動人工智能全球治理的一項重要成果。 [3]智能AGENT必須能夠制定目標(biāo)和實現(xiàn)這些目標(biāo)。包河區(qū)常規(guī)人工智能應(yīng)用軟件開發(fā)費用2017年12月,人工智能入選“2017年度中國媒體**...
2023年4月,美國《科學(xué)時報》刊文介紹了正在深刻改變醫(yī)療保健領(lǐng)域的五大**技術(shù):可穿戴設(shè)備和應(yīng)用程序、人工智能與機(jī)器學(xué)習(xí)、遠(yuǎn)程醫(yī)療、機(jī)器人技術(shù)、3D打印。 [20]2024年3月,文生視頻模型Sora的推出引起***關(guān)注。人工智能技術(shù)快速發(fā)展,其潛在的風(fēng)險也隨之出現(xiàn),真假的界限似乎變得更加模糊。 [40]2024年,谷歌 DeepMind 和斯坦福大學(xué)的研究人員推出了一種基于大語言模型的工具 —— 搜索增強(qiáng)事實評估器(IT之家注:原名為 Search-Augmented Factuality Evaluator,簡稱 SAFE),可對聊天機(jī)器人生成的長回復(fù)進(jìn)行事實核查人了解的智能是人本身的智...
當(dāng)計算機(jī)出現(xiàn)后,人類開始真正有了一個可以模擬人類思維的工具,在以后的歲月中,無數(shù)科學(xué)家為這個目標(biāo)努力著。如今人工智能已經(jīng)不再是幾個科學(xué)家的**了,全世界幾乎所有大學(xué)的計算機(jī)系都有人在研究這門學(xué)科,學(xué)習(xí)計算機(jī)的大學(xué)生也必須學(xué)習(xí)這樣一門課程,在大家不懈的努力下,如今計算機(jī)似乎已經(jīng)變得十分聰明了。例如,1997年5月,IBM公司研制的深藍(lán)(DEEP BLUE)計算機(jī)戰(zhàn)勝了國際象棋大師卡斯帕洛夫(KASPAROV)。大家或許不會注意到,在一些地方計算機(jī)幫助人進(jìn)行其它原來只屬于人類的工作,計算機(jī)以它的高速和準(zhǔn)確為人類發(fā)揮著它的作用。人工智能始終是計算機(jī)科學(xué)的前沿學(xué)科,計算機(jī)編程語言和其它計算機(jī)軟件都因為...
自下而上, 接口AGENT,嵌入環(huán)境(機(jī)器人),行為主義,新式AI機(jī)器人領(lǐng)域相關(guān)的研究者,如RODNEY BROOKS,否定符號人工智能而專注于機(jī)器人移動和求生等基本的工程問題。他們的工作再次關(guān)注早期控制論研究者的觀點,同時提出了在人工智能中使用控制理論。這與認(rèn)知科學(xué)領(lǐng)域中的表征感知論點是一致的:更高的智能需要個體的表征(如移動,感知和形象)。計算智能80年代中DAVID RUMELHART 等再次提出神經(jīng)網(wǎng)絡(luò)和聯(lián)結(jié)主義. 這和其他的子符號方法,如模糊控制和進(jìn)化計算,都屬于計算智能學(xué)科研究范疇。統(tǒng)計學(xué)法它必須改變它的計劃。因此智能代理必須具有在不確定結(jié)果的狀態(tài)下推理的能力。肥東定制人工智能應(yīng)用...
智能模擬機(jī)器視、聽、觸、感覺及思維方式的模擬:指紋識別,人臉識別,視網(wǎng)膜識別,虹膜識別,掌紋識別,**系統(tǒng),智能搜索,定理證明,邏輯推理,博弈,信息感應(yīng)與辨證處理。學(xué)科范疇人工智能是一門邊沿學(xué)科,屬于自然科學(xué)、社會科學(xué)、技術(shù)科學(xué)三向交叉學(xué)科。涉及學(xué)科哲學(xué)和認(rèn)知科學(xué),數(shù)學(xué),神經(jīng)生理學(xué),心理學(xué),計算機(jī)科學(xué),信息論,控制論,不定性論,仿生學(xué),社會結(jié)構(gòu)學(xué)與科學(xué)發(fā)展觀。研究范疇語言的學(xué)習(xí)與處理,知識表現(xiàn),智能搜索,推理,規(guī)劃,機(jī)器學(xué)習(xí),知識獲取,組合調(diào)度問題,感知問題,模式識別,邏輯程序設(shè)計,軟計算,不精確和不確定的管理,人工生命,神經(jīng)網(wǎng)絡(luò),復(fù)雜系統(tǒng),遺傳算法人類思維方式,**關(guān)鍵的難題還是機(jī)器的自主創(chuàng)...
這種系統(tǒng)開始也常犯錯誤,但它能吸取教訓(xùn),下一次運行時就可能改正,至少不會永遠(yuǎn)錯下去,用不到發(fā)布新版本或打補(bǔ)丁。利用這種方法來實現(xiàn)人工智能,要求編程者具有生物學(xué)的思考方法,入門難度大一點。但一旦入了門,就可得到廣泛應(yīng)用。由于這種方法編程時無須對角色的活動規(guī)律做詳細(xì)規(guī)定,應(yīng)用于復(fù)雜問題,通常會比前一種方法更省力。與人類差距2023年,中國科學(xué)院自動化研究所(中科院自動化所)團(tuán)隊***完成的一項研究發(fā)現(xiàn),基于人工智能的神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)模型對幻覺輪廓“視而不見”,人類與人工智能的“角逐”在幻覺認(rèn)知上“扳回一局”。 [13]人工智能研究已經(jīng)于這種“次表征性的”解決問題方法取得進(jìn)展:實體化AGENT研究...
20世紀(jì)70年代以來,人工智能被稱為世界三大前列技術(shù)之一(空間技術(shù)、能源技術(shù)、人工智能)。也被認(rèn)為是21世紀(jì)三大前列技術(shù)(基因工程、納米科學(xué)、人工智能)之一。這是因為近三十年來它獲得了迅速的發(fā)展,在很多學(xué)科領(lǐng)域都獲得了廣泛應(yīng)用,并取得了豐碩的成果,人工智能已逐步成為一個**的分支,無論在理論和實踐上都已自成一個系統(tǒng)。人工智能是研究使用計算機(jī)來模擬人的某些思維過程和智能行為(如學(xué)習(xí)、推理、思考、規(guī)劃等)的學(xué)科,主要包括計算機(jī)實現(xiàn)智能的原理、制造類似于人腦智能的計算機(jī),使計算機(jī)能實現(xiàn)更高層次的應(yīng)用。人工智能將涉及到計算機(jī)科學(xué)、心理學(xué)、哲學(xué)和語言學(xué)等學(xué)科?,F(xiàn)代電子計算機(jī)的產(chǎn)生便是對人腦思維功能的模擬...
關(guān)于什么是“智能”,涉及到諸如意識(CONSCIOUSNESS)、自我(SELF)、思維(MIND)(包括無意識的思維(UNCONSCIOUS MIND))等問題。人***了解的智能是人本身的智能,這是普遍認(rèn)同的觀點。但是我們對我們自身智能的理解都非常有限,對構(gòu)成人的智能的必要元素也了解有限,所以就很難定義什么是人工智能。人工智能的研究往往涉及對人的智能本身的研究。其它關(guān)于動物或其它人造系統(tǒng)的智能也普遍被認(rèn)為是人工智能相關(guān)的研究課題。尼爾遜教授對人工智能下了這樣一個定義:“人工智能是關(guān)于知識的學(xué)科――怎樣表示知識以及怎樣獲得知識并使用知識的科學(xué)?!倍硪粋€美國麻省理工學(xué)院的溫斯頓教授認(rèn)為:“人...
關(guān)于什么是“智能”,涉及到諸如意識(CONSCIOUSNESS)、自我(SELF)、思維(MIND)(包括無意識的思維(UNCONSCIOUS MIND))等問題。人***了解的智能是人本身的智能,這是普遍認(rèn)同的觀點。但是我們對我們自身智能的理解都非常有限,對構(gòu)成人的智能的必要元素也了解有限,所以就很難定義什么是人工智能。人工智能的研究往往涉及對人的智能本身的研究。其它關(guān)于動物或其它人造系統(tǒng)的智能也普遍被認(rèn)為是人工智能相關(guān)的研究課題。尼爾遜教授對人工智能下了這樣一個定義:“人工智能是關(guān)于知識的學(xué)科――怎樣表示知識以及怎樣獲得知識并使用知識的科學(xué)?!倍硪粋€美國麻省理工學(xué)院的溫斯頓教授認(rèn)為:“人...
意識和人工智能人工智能就其本質(zhì)而言,是對人的思維的信息過程的模擬。對于人的思維模擬可以從兩條道路進(jìn)行,一是結(jié)構(gòu)模擬,仿照人腦的結(jié)構(gòu)機(jī)制,制造出“類人腦”的機(jī)器;二是功能模擬,暫時撇開人腦的內(nèi)部結(jié)構(gòu),而從其功能過程進(jìn)行模擬。現(xiàn)代電子計算機(jī)的產(chǎn)生便是對人腦思維功能的模擬,是對人腦思維的信息過程的模擬。弱人工智能如今不斷地迅猛發(fā)展,尤其是2008年經(jīng)濟(jì)危機(jī)后,美日歐希望借機(jī)器人等實現(xiàn)再工業(yè)化,工業(yè)機(jī)器人以比以往任何時候更快的速度發(fā)展,更加帶動了弱人工智能和相關(guān)領(lǐng)域產(chǎn)業(yè)的不斷突破,很多必須用人來做的工作如今已經(jīng)能用機(jī)器人實現(xiàn)。它必須改變它的計劃。因此智能代理必須具有在不確定結(jié)果的狀態(tài)下推理的能力。廬陽...
計算機(jī)需要不斷從解決一類問題的經(jīng)驗中獲取知識,學(xué)習(xí)策略,在遇到類似的問題時,運用經(jīng)驗知識解決問題并積累新的經(jīng)驗,就像普通人一樣。我們可以將這樣的學(xué)習(xí)方式稱之為“連續(xù)型學(xué)習(xí)”。但人類除了會從經(jīng)驗中學(xué)習(xí)之外,還會創(chuàng)造,即“跳躍型學(xué)習(xí)”。這在某些情形下被稱為“靈感”或“頓悟”。一直以來,計算機(jī)**難學(xué)會的就是“頓悟”?;蛘咴賴?yán)格一些來說,計算機(jī)在學(xué)習(xí)和“實踐”方面難以學(xué)會“不依賴于量變的質(zhì)變”,很難從一種“質(zhì)”直接到另一種“質(zhì)”,或者從一個“概念”直接到另一個“概念”。正因為如此,這里的“實踐”并非同人類一樣的實踐。人類的實踐過程同時包括經(jīng)驗和創(chuàng)造。如果事實并非如此,它必須定期檢查世界模型的狀態(tài)是否...
為了得到相同智能效果,兩種方式通常都可使用。采用前一種方法,需要人工詳細(xì)規(guī)定程序邏輯,如果游戲簡單,還是方便的。如果游戲復(fù)雜,角色數(shù)量和活動空間增加,相應(yīng)的邏輯就會很復(fù)雜(按指數(shù)式增長),人工編程就非常繁瑣,容易出錯。而一旦出錯,就必須修改原程序,重新編譯、調(diào)試,***為用戶提供一個新的版本或提供一個新補(bǔ)丁,非常麻煩。采用后一種方法時,編程者要為每一角色設(shè)計一個智能系統(tǒng)(一個模塊)來進(jìn)行控制,這個智能系統(tǒng)(模塊)開始什么也不懂,就像初生嬰兒那樣,但它能夠?qū)W習(xí),能漸漸地適應(yīng)環(huán)境,應(yīng)付各種復(fù)雜情況。1月14日,中國外交部發(fā)言人郭嘉昆表示:堅決反對美方在AI領(lǐng)域也搞“三六九等” [65]。銅陵品牌人...
但80年代對AI工業(yè)來說也不全是好年景.86-87年對AI系統(tǒng)的需求下降,業(yè)界損失了近5億美元.象 TEKNOWLEDGE和INTELLICORP兩家共損失超過6百萬美元,大約占利潤的三分之一巨大的損失迫使許多研究***削減經(jīng)費.另一個令人失望的是**部高級研究計劃署支持的所謂"智能卡車".這個項目目的是研制一種能完成許多戰(zhàn)地任務(wù)的機(jī)器人。由于項目缺陷和成功無望,PENTAGON停止了項目的經(jīng)費.人工智能機(jī)器人(2張)盡管經(jīng)歷了這些受挫的事件,AI仍在慢慢恢復(fù)發(fā)展.新的技術(shù)在日本被開發(fā)出來,如在美國**的模糊邏輯,它可以從不確定的條件作出決策;還有神經(jīng)網(wǎng)絡(luò),被視為實現(xiàn)人工智能的可能途徑.總之,...
ROGER SCHANK 描述他們的“反邏輯”方法為 "SCRUFFY" .常識知識庫 (如DOUG LENAT的CYC)就是"SCRUFFY"AI的例子,因為他們必須人工一次編寫一個復(fù)雜的概念?;谥R大約在1970年出現(xiàn)大容量內(nèi)存計算機(jī),研究者分別以三個方法開始把知識構(gòu)造成應(yīng)用軟件。這場“知識**”促成**系統(tǒng)的開發(fā)與計劃,這是***個成功的人工智能軟件形式。“知識**”同時讓人們意識到許多簡單的人工智能軟件可能需要大量的知識。子符號法80年代符號人工智能停滯不前,很多人認(rèn)為符號系統(tǒng)永遠(yuǎn)不可能模仿人類所有的認(rèn)知過程,特別是感知,機(jī)器人,機(jī)器學(xué)習(xí)和模式識別。很多研究者開始關(guān)注子符號方法解決特...
當(dāng)計算機(jī)出現(xiàn)后,人類開始真正有了一個可以模擬人類思維的工具,在以后的歲月中,無數(shù)科學(xué)家為這個目標(biāo)努力著。如今人工智能已經(jīng)不再是幾個科學(xué)家的**了,全世界幾乎所有大學(xué)的計算機(jī)系都有人在研究這門學(xué)科,學(xué)習(xí)計算機(jī)的大學(xué)生也必須學(xué)習(xí)這樣一門課程,在大家不懈的努力下,如今計算機(jī)似乎已經(jīng)變得十分聰明了。例如,1997年5月,IBM公司研制的深藍(lán)(DEEP BLUE)計算機(jī)戰(zhàn)勝了國際象棋大師卡斯帕洛夫(KASPAROV)。大家或許不會注意到,在一些地方計算機(jī)幫助人進(jìn)行其它原來只屬于人類的工作,計算機(jī)以它的高速和準(zhǔn)確為人類發(fā)揮著它的作用。人工智能始終是計算機(jī)科學(xué)的前沿學(xué)科,計算機(jī)編程語言和其它計算機(jī)軟件都因為...